工礦信息
|
羅茨真空泵結構組成和結構特點 羅茨真空泵結構組成 羅茨真空泵的兩個轉子在泵體中如何布置,決定了泵的總體結構。國內外羅茨真空泵的總體結構布置一般有三種方案 羅茨真空泵冷卻裝置 1.空氣冷卻 2.轉子的內部冷卻 3.轉子的油膜冷卻 4.水冷卻 羅茨真空泵結構特點 羅茨真空泵結構組成 羅茨真空泵的兩個轉子在泵體中如何布置,決定了泵的總體結構。國內外羅茨真空泵的總體結構布置一般有三種方案: 1.立式:兩個轉子的軸線呈水平安裝,但兩個轉子軸線構成的平面與水平面垂直,這種結構,泵的進排氣口呈水平設置,裝配和連接管道都比較方便。但其缺點是泵的重心太高,在高速運轉時穩定性差,所以除小規格的泵外,采用這種結構型式的不太多。 2.臥式:兩個轉子的軸線呈水平安裝,兩個轉子軸線構成的平面成水平方向,這種結構的泵的進氣口在泵的上方,排氣口在泵的下方(也有與此相反的)。下邊的排氣口一般為水平方向接出,所以進排氣方向是相互垂直的。排氣口接一個三通管向兩個方向開口,一端接排氣管道,另一端死或接旁通閥時使用。這種結構的特點是重心低,高速運轉時穩定性好。國內外大中型泵多采用此種結構型式。 3.豎軸式:國外有的羅茨泵的兩個轉子軸線與水平面垂直安裝。這種結構的裝配間隙容易控制,轉子裝配方便,占地面積小,但齒輪等傳動機構裝拆不便,潤滑裝置也較復雜。 當總體結構決定后,泵體本身的結構與形狀也就相應地決定了。 4.帶溢流閥的羅茨泵:為了防止超載引起事故,羅茨泵上裝有一個比較可靠的安全保護器,即在旁通管路上裝有一個溢流閥。排氣口處于規定壓力時,溢流閥是關閉的。當其排氣口壓力超過規定壓力時,則溢流閥的閥門自動被頂開而產生溢漢,排氣口壓力變正常后,溢流閥再自行關閉。它能自動調節,也是泵的允許壓差裝置,因此溢流閥的最大好處是使羅茨泵能連同前級泵一起,在各種壓力范圍內能連續運轉。采用這種設計,能使真空容器在粗真空狀態的抽氣停息時間可縮短30~50%.對于比較大的泵,溢流閥安裝在泵體外邊的旁通管路上,在比較小的泵上,溢流閥則是裝在泵殼內的。 5.帶蒸汽冷凝器的羅茨泵:在需要抽吸蒸汽情況下,抽氣機組必須設計會使蒸汽冷凝的冷凝器,這個冷凝器可裝在泵之前或裝在泵之后,而不裝在羅茨泵的泵體上。在某種情況下,冷凝特升化吸熱能夠減少羅茨泵發熱。假設采用了復式冷凝器,在維修時可用適當的溶劑清除污垢,蒸汽就能順暢地在導管中流動。從特征曲線可以看出當達到極限真空時,通過泵入口的正向氣流量為零,既泵的實際抽速為零,式: PC和PR事實就是前級泵和羅茨真空泵的極限壓力,達到極限真空是幾乎為分子流狀態,將其導通能力帶入式中: 理論抽速 P0—羅茨真空泵的極限壓力 P0φ—前級真空泵的極限壓力 11.6F —20℃時空氣的導通能力 因此選擇不同的前級泵可以獲得不同的極限真空 羅茨真空泵冷卻裝置 1.空氣冷卻:羅茨真空泵由于輸送和壓縮氣體而產生熱量,這些熱量必須從轉子傳至殼體而散發。但在低壓下,氣體對熱的傳導和對流性能極差,致使轉子吸收的熱量不易散出,造成轉子溫度永遠高于殼體的溫度。由于轉子的熱膨脹,使轉子與轉子間、轉子與泵殼間的間隙減少,特別在壓差也高的情況下,尤為嚴重,甚至造成轉子卡死,使泵損壞。為了使羅茨泵在較高的壓差下工作,以擴大使用范圍,增加泵的可靠性,就必須設法散出轉子產生的熱量,也就是說要對轉子進行冷卻。 為了理解空氣冷卻的實質,先來看一下氣體在羅茨真空泵排氣一側的流動情況,在羅茨真空泵中吸入氣體被壓縮的過程不是連續的,而是突然的。吸入氣體隨轉子轉動而被封閉于腔內,又隨轉子的旋轉,使腔內的氣體突然與排氣口接通。由于排氣一側的氣體壓力較高,排氣口處的氣體就向腔中返沖,然后又隨著轉子的旋轉而被驅趕排出泵外。這樣的過程在每旋轉一周中兩個轉子共進行四次排氣過程。 從上述氣體的流動情況可以設想:假若每次返沖到泵腔中的氣體是冷的,則可以在高溫的泵腔內吸收大量的熱量,這些吸收了熱量的氣體又在轉子的繼續壓縮中排出,從而會達到轉子冷卻的目的。 空氣冷卻就是運用上述原理。在泵的排氣口處設置密集的冷卻片,冷卻片用冷水管進行冷卻,或在泵的排氣口處直接安裝冷卻水管,這樣排氣口處的氣體就會降溫,這種冷卻方法能有效地散出羅茨泵轉子在壓縮氣體中所產生的執量。而且當排氣壓力較高時,因氣體分子的密度大,使熱傳導性能更好,其冷卻效果也好些。使用這種方法能保證泵在較高的壓差下作,實驗證明,一臺羅茨泵在30Torr壓差下運轉6h,其轉子在外殼的溫度差為22度,當在排氣口處安裝冷卻器后,在85Torr壓差下長其運轉,其溫差也不超過17度。一般說來,羅茨真空泵采用空氣冷卻之后,可將壓差提高80Torr,而不加冷卻器一般只能達到15~30Torr。 這種冷卻方法與環境溫度有關系,環境溫度高吸入的氣體溫度就高。則冷卻效果就不好。此外,這種方法只能避免高壓差產生的高熱,而不能防止泵壓縮過程中發熱,而引起間隙變小的問題,所以受泵本身間隙的限制。 2.轉子的內部冷卻:為了使羅茨真空泵在更高壓差下工作,可采取更有效的冷卻方法,即將轉子用循環油冷卻,在泵軸兩端分別有油孔、油徑軸頭打入,經轉子內壁再從另一端排出。冷卻油除冷卻轉子外,還潤滑齒輪和軸承。這種冷卻效果較好,泵在運轉時轉子溫度低于外殼溫度,大泵常采用這種方式。例如在80Torr壓差下工作時,羅茨真空泵轉子溫度較外殼低78度,同時還發現泵負荷越重時,則間隙越大,這是因為轉子用油冷卻,溫度比殼體低,負荷越大,殼體膨脹越厲害,軸間距加大,所以間隙會增大。 由于負荷大,轉子和殼體溫差不斷增高,使間隙不斷增大,這會使首逆流增大,引起羅茨真空泵抽速下降。為了克服這個缺點,羅茨泵在高負荷下工作時,需要采用有效措施,一般是將羅茨真空泵的外殼和轉子同時采用油循環系統進行冷卻。 3.轉子的油膜冷卻:這種冷卻方法是在羅茨真空泵入口處連接一個輸油管,用均勻滴下的冷卻油帶走轉子的熱量。油經過濾器器、冷卻器,通過密封良好的油泵,再經過辦輸油管將油送到泵的入口。油滴到轉子上之后,隨著轉子的旋轉而均面在轉了子的表面上。這不僅將轉子的熱量帶走,同時在兩個轉子表面上形成油膜,防止氣體的逆流,而且還能將轉子表面上依附的微細塵埃帶走。在泵的出口處設有油槽,收集廢油,經過過濾,冷卻后重新循環使用。此種方法效果良好。但由于泵內有油,失去了羅茨泵無油蒸汽污染真空系統的特點。再則油具有一定的粘度,對高速旋轉的羅茨泵轉子增加了不少的摩擦力,當然使泵的功率消耗增加。 所使用的油,要求飽和蒸汽壓應盡量代。 4.水冷卻:所謂濕式羅茨真空泵,即是由間級或雙級泵吸入的空氣經壓縮后,通過綜合吸收及有相位差的組合消音器傳送。將微量的水注入泵內,便能消除因壓縮空氣而產生的熱量。吸入水管裝在單級或雙級泵組的吸氣端并連接到真空泵的進氣口上。水是靠真空泵產生的真空度而吸入,真空度越大,吸入水量就越高。用一只簡單的調節閥門便能保證最佳的吸入量,吸入水的溫度應保持在20度左右,要清潔,無鈣質。 羅茨真空泵結構特點 (1)在較寬的壓力范圍內有較大的抽速; (2)轉子具有良好的幾何對稱性,故振動小,運轉平穩。轉子間及轉子和殼體間均有間隙,不用潤滑,摩擦損失小,可大大降低驅動功率,從而可實現較高轉速; (3)泵腔內無需用油密封和潤滑,可減少油蒸氣對真空系統的污染; (4)泵腔內無壓縮,無排氣閥。結構簡單、緊湊,對被抽氣體中的灰塵和水蒸汽不敏感; (5)壓縮比較低,對氫氣抽氣效果差; (6)轉子表面為形狀較為復雜的曲線柱面,加工和檢查比較困難。羅茨真空泵近幾年在國內外得到較快的發展。在冶煉、石油化工、電工、電子等行業得到了廣泛的應用。 【打印本頁】
|