工礦信息
|
金屬管浮子流量計結構及工作原理 山東卓力工礦是知名道岔廠家,專業生產:往復式給煤機,恒阻器,煤礦道岔,鐵路道岔.道岔型號齊全,價格實在!Tel:13280082001. 金屬管浮子流量計結構 金屬浮子流量計的流量檢測元件是由一根自下向上擴大的垂直錐形管和一個沿著錐管軸上下移動的浮子組所組成。 1、高溫型結構(G型) 高溫結構型(G型)是用于介質溫度過高或過低而需要對測量管采取保溫隔熱措施的介質的流量測量。高溫型結構是加大了測量管與指示器之間的距離來增加散熱、增加隔熱材料厚度,保證指示器工作在允許的環境溫度范圍內。選型為"G"型。 G型金屬管浮子流量計可以測量溫度達-80℃-+300℃的介質的流量。 2、帶阻尼器裝置的結構(Z型) 阻尼器結構型用于流量計入口流量(壓力)不穩定時的介質流量測量,特別是對于氣體的測量。它的結構如圖所示. 3、夾套型結構(T型) 夾套型結構用于對需要伴熱或冷卻(如高粘度和易結晶)的介質的流量測量。在夾套中通過加熱或冷卻介質,使低沸點、低凝固點流體不汽化和不結晶。 伴熱介質的導入和導出連接,標準型要用HG20594-97 DN15 PN1.6法蘭,其它的法蘭規格連接可與生產廠標明,夾套的壓力等級為1.6MPa. 夾套型流量計結構見FA標準型流量計法蘭、外形尺寸圖。 4、高壓型結構(Y型) 高壓型結構用于被測介質壓力大于標準的壓力等級的流量測量。高壓型結構如下圖所示。目前FFM64系列的最高壓力可以達到32MPa。另外高壓型流量計可提供內置磁過濾器型,安裝高度均為350mm。FA、FB和FC型最大壓力為10MPa。 金屬管浮子流量計原理 金屬管浮子流量計浮子在測量管中,隨著流量的變化,將浮子向上移動,在某一位置浮子所受的浮力與浮子重力達到平衡。此時浮子與孔板(或錐管)間的流通環隙面積保持一定。環隙面積與浮子的上升高度成正比,即浮子在測量管中上升的位置代表流量的大小,變化浮子的位置由內部磁鐵傳輸到外部的指示器,使指示器正確地指示此時的流量值。這就使得指示器殼體不和測量管直接接觸,因此,即使安裝限位開關或變送器,儀表可用于高溫,高壓工作條件下。 工作原理如圖1所示: 被測流體從下向上經過錐管1和浮子2形成的環隙3時,浮子上下端產生差壓形成浮子上升的力,當浮子所受上升力大于浸在流體中浮子重量時,浮子便上升,環隙面積隨之增大,環隙處流體流速立即下降,浮子上下端差壓降低,作用于浮子的上升力亦隨著減少,直到上升力等于浸在流體中浮子重量時,浮子便穩定在某一高度。浮子在錐管中高度和通過的流量有對應關系。 體積流量Q的基本方程式如下: (1)當浮子為非實芯中空結構(放負重調整量)時,則 (2)式中 α——儀表的流量系數,因浮子形狀而異; ε——被測流體為氣體時氣體膨脹系數,通常由于此系數校正量很小而被忽略,且通過校驗已將它包括在流量系數內,如為液體則 ε=1; △F——流通環形面積,m2; g——當地重力加速度,m/s2; Vf——浮子體積,如有延伸體亦應包括,m3; ρf——浮子材料密度,kg/m3; ρ——被測流體密度,如為氣體是在浮子上游橫截面上的密度,kg/m3; Ff——浮子工作直徑(最大直徑)處的橫截面積,m2; Gf——浮子質量,kg。 流通環形面積與浮子高度之間的關系如式(3)所示: 當結構設計已定,則d、 β為常量。式中有h的二次項,一般不能忽略此非線性關系,只有在圓錐角很小時,才可視為近似線性。 m2 (3)式中 d——浮子最大直徑(即工作直徑),m; h——浮子從錐管內徑等于浮子最大直徑處上升高度,m; β——錐管的圓錐角; a、b——常數。 口徑15-40mm透明錐形管浮子流量計典型結構如圖2所示。透明錐形管4用得最普遍是由硼硅玻璃制成,習慣簡稱玻璃管浮子流量計。流量分度直接刻在錐管4外壁上,也有在錐管旁另裝分度標尺。錐管內腔有圓錐體平滑面和帶導向棱筋(或平面)兩種。浮子在錐管內自由移動,或在錐管棱筋導向下移動,較大口平滑面內壁儀表還有采用導桿導向。 圖3是直角型安裝方式金屬管浮子流量計典型結構,通常適用于口徑15-40mm以上儀表。錐管5和浮子4組成流量檢測元件。套管(圖3未表示)內有導桿3的延伸部分,通過磁鋼耦合等方式,將浮子的位移傳給套管外的轉換部分。轉換部分有就地指示和遠傳信號輸出兩大類型。除直角安裝方式結構外還有進出口中線與錐管同心的直通型結構,通常用于口徑小于10-15mm的儀表。 【打印本頁】
|